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Abstract

A common procedure for selecting people is to have them draw
balls from an urn in turn. Modern and ancient stories suggest that
such lotteries may be viewed by the individuals as “unfair.” We com-
pare this procedure with several alternatives. They all give individuals
equal chance of being selected, but have different structures. We an-
alyze these procedures as multistage lotteries. In line with previous
literature, our analysis is based on the observation that multistage
lotteries are not considered indifferent to their probabilistic one-stage
representations. We use a non-expected utility model and show that
individuals have preferences over the different procedures.
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1 Introduction

Thirty French hostages in a German prison in occupied France need to select
three of them to be executed by their captives in retribution to the killing of
three Germans by the Resistance. They tear down an old letter into thirty
pieces, draw a cross on three of them, and alphabetically one after the other
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draw them out of a shoe (Graham Greene, The Tenth Man). Nine Greek
heroes want to duel Hector. Old Nestor suggests a lottery. They mark their
lots and cast them in a helmet. Nestor shakes the helmet, and out falls the
lot of Ajax (Iliad VII, 171–182). Moses needs to select seventy out of seventy-
two elders to help him in leading the Israelites in the desert. He intents to
mark seventy slips “elder,” to put them with two empty slips into an urn,
and to ask each of the candidates, in their turn, to draw a lot. To abate a
possible claim of unfairness by the elders, he actually marks seventy-two slips
“elder” and put them, together with two blank slips into the urn (Talmud

Yerushalmi, Sanhedrin 1:7).1 Five crackers are put in a bowl full of bran. In
four of them there is a check for 2 million SF, one contains a bomb, strong
enough to kill the person who pulls the cracker. Mrs. Montgomery and Mr.
Belmont reach the bowl together. “Mrs. Montgomery... crying ‘Ladies first’,
knocked off the lid and plunged her hand into the bran. Perhaps she had
calculated that the odds would never be as favorable again. Belmont had
probably been thinking along the same lines, for he protested, ‘We should
have drawn for turns’.” (Graham Greene, Dr. Fischer of Geneva, or the

Bomb Party).

Each of these procedures needs to select some members of a given group,
either for a good or for a bad outcome. In all cases a random tool is used
which gives all candidates the same probability of selection. But are these
procedures all the same? Clearly, the candidates have preferences over the
different mechanisms. Are they wrong?

Statistically — for sure. But this doesn’t mean that candidates may not
have preferences over the way these probabilities are created. Most of these
procedures require more than one stage of randomization, and following the
empirical and theoretical literature, we show that the different structures
lead to non-indifference between them. Moreover, we show that the intuitive
preferences (as reflected by the above and other examples) are derived from
the same conditions leading to some violations of expected utility theory.2

We discuss three procedures. 1. Pre-ordered draws, where n− 1 balls of

1The Talmud is aware of the fact that more than seventy elders may be selected, but
shrugs it off, saying that by a miracle it didn’t happen. The probability of this “miracle”
is more than 94%, so it is more a story of bold leadership.

2For example, violations like the common ratio effect, similar to the form (1M, 1) ≻
(5M, 0.8; 0, 0.2) while (5M, 0.04; 0, 0.96) ≻ (1M, 0.05; 0, 0.95). See Allais [1], Macrimmon
and Larsson [10], Starmer [15] and further references there.
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one color and one ball of another color are put into a box and in their turn,
subjects pick a random ball with no replacement. The selected person is the
one who picked the odd ball (similarly to the prison example). 2. Names
lottery, where the n names are put in a box and one (or n− 1) are randomly
selected (the Iliad example). 3. A winning ball is added to the pre-ordered
procedure, and if too many people are selected, the procedure starts over
again (a variant of Moses and the elders). We compare these procedures
and show how their desirability changes with the size of the group and the
identity of each participant.

2 Preliminaries

Much of our analysis depends on the evaluation of multi-stage lotteries.
There are basically two ways in which such lotteries can be transformed
into simple, one-stage lotteries. The first one is using the reduction ax-
iom, according to which each possible outcome is listed with its compound
probability, obtained by multiplication of the probabilities along the path to
that outcomes. Alternatively, each simple lottery is replaced by its certainty
equivalent and when applied recursively, the value of the multi-stage lottery
is computed. Expected utility is the only theory under which decision mak-
ers are indifferent between these two simplifications. Experiments tend to
support the second approach (see Halevy [8], Starmer [15], and references in
these two papers), and as we are interested in people’s feelings, we follow
this approach.

Decision makers may use any functional for the evaluation of simple lot-
teries. Some models even permit using different evaluations at different stages
(see e.g. Klibanoff, Marinacci, and Mukerji [9]. See also Dillenberger and Se-
gal [7]). Given a two-stage lottery L = (X1, q1; . . . ;Xℓ, qℓ) where X1, . . . , Xℓ

are simple lotteries, the lottery L is transformed by the decision maker to
the simple lottery (CE(X1), q1; . . . ; CE(Xℓ), qℓ), where CE(X) is the certainty
equivalent of X. For concrete results, we use the same rank dependent (RD)
model (Quiggin [11]) at all stages (see Segal [13, 14]). According to this
model the value of the lottery X = (x1, p1; . . . ; xm, pm) where x1 ≤ . . . ≤ xm,
is

RD(X) =
m−1
∑

j=1

u(xj)

[

f

(

m
∑

l=j

pl

)

− f

(

m
∑

l=j+1

pl

)]

+ u(xm)f(pm) (1)

3



where f is continuous and strictly increasing, u(0) = 0, f(0) = 0, and f(1) =
1. The value of the lottery L is

RD
(

u−1(RD(X1)), q1; . . . ; u
−1(RD(Xℓ)), qℓ

)

(2)

Let g(p) = 1−f(1−p). Observe that g(0) = 0, g(1) = 1, and g is concave
iff f is convex. Furthermore we can rewrite eq. (1) as

u(x1)g(p1) +
m
∑

j=2

u(xj)

[

g

(

j
∑

l=1

pl

)

− g

(

j−1
∑

l=1

pl

)]

(3)

We assume throughout that all individuals in society have the same prefer-
ences (and will therefore use the same functions u, f , and g to all), that the
utility from being selected for a good outcome is 1, and the utility from being
selected for a bad outcome is 0. Denote by vi(Γ) the value of procedure Γ to
individual i using eq. (2) with either eq. (1) or (3).

The RD model represents risk aversion (in the sense of rejection of mean
preserving spreads) iff f is convex (and g concave, see Chew, Karni, and

Safra [5]). The elasticity of a function h(p) is given by ηh(p) = ph′(p)
h(p)

. In-

creasing elasticity of f is linked to the common ratio effect (Segal [12]) and
to the recursive model of ambiguity (Segal [13]). We use below the following
lemma from [13]:

Lemma 1. If the elasticity of f is increasing, then f(p)f(q) ≤ f(pq). If the
elasticity of g is decreasing, then g(p)g(q) ≥ g(pq).3

Comment: Below, we analyze changes in individuals’ welfare due to changes
in the basic parameters, for example the number n of individuals from whom
we select. These are discrete variables, but we consider them as continuous
so that we differentiate with respect to them. The results are of course
meaningful only for the integer values of these variables.

3 Pre-Ordered Draws

Many of the procedures discussed in the introduction assume the following
procedure. Two types of balls (or slips) are put in an urn, say green and

3The statement of Lemma 4.1 in [13] is wrong (it suggests an iff result). The proof
there only proves Lemma 1 above. Observe that this lemma does not require f to be
convex or g to be concave.
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red. People are pre-ordered, and then one after the other they draw from the
urn. Those who drew green are selected for a good outcome receiving utility
1, and those who drew red are not selected and receive utility 0. Denote by
P (n, k) the case in which there are k green balls and n−k red balls. We will
focus on the specific cases k = 1 and k = n− 1.

Consider individual i in procedure P (n, 1). With probability i−1
n
, someone

already drew the green ball before his turn. In this case, he is not selected
and gets 0. With the remaining probability, n−i+1

n
, the green ball has not

yet been drawn before his turn. Then he is facing a lottery in which with
probability 1

n−i+1
he draws the green ball, is selected, and gets 1. With the

remaining probability, n−i
n−i+1

, he draws a red ball, is not selected, and gets 0.
Hence, individual i is facing the two-stage lottery

(

0, i−1
n
;
(

0, n−i
n−i+1

; 1, 1
n−i+1

)

, n−i+1
n

)

Using eqs. (1) and (2), the value of this lottery is

vi(P (n, 1)) = f
(

n−i+1
n

)

f
(

1
n−i+1

)

(4)

Selecting n − 1 out of n individuals for a good outcome using the pre-
ordered procedure is the same as selecting 1 out of n individuals for a bad
outcome. Similarly to the previous analysis, individual i is then facing the
two-stage lottery

(

1, i−1
n
;
(

1, n−i
n−i+1

; 0, 1
n−i+1

)

, n−i+1
n

)

Using eqs. (2) and (3), the value of this lottery is

vi(P (n, n− 1)) =
[

1− g
(

n−i+1
n

)]

+ g
(

n−i+1
n

) [

1− g
(

1
n−i+1

)]

= 1− g
(

n−i+1
n

)

g
(

1
n−i+1

)

(5)

Procedures P (n, 1) and P (n, n− 1) for person i are depicted in figure 1.

3.1 Does the order matter?

Mrs. Montgomery and Mr. Belmont apparently believe that being the first
to pick a cracker is best. The prisoners follow a reverse alphabetical order,
starting with Z. Mr. Chavel, the one to offer it, doesn’t seem to be indifferent
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P (n, 1) P (n, n− 1)

0

0 1

1

01

i−1
n

n−i+1
n

n−i
n−i+1

1
n−i+1

i−1
n

n−i+1
n

n−i
n−i+1

1
n−i+1

Figure 1: Procedures P (n, 1) and P (n, n− 1) for person i

to the order in which slips are picked. Many commentators on the Talmudic
story of Moses and the elders point out that the last person to pick a slip
is not in the same position as everyone else and some argue that being first
is best. Do any of these make sense? After all, the probability of picking a
winning ball clearly does not depend on one’s position in the queue.

But the position in the queue changes the structure of the two-stage
lottery in which each person participates. Using recursive evaluation of such
lotteries shows that all these lotteries are not the same. It turns out that
under the same condition that implies the common ratio effect, people will
prefer to be the first to draw.

Claim 1. Let i∗ = n + 1 − √
n. If the elasticity of f is increasing, then

vi(P (n, 1)) is decreasing in i until i∗ and increasing thereafter. If the elasticity
of g is decreasing, then vi(P (n, n−1)) is decreasing in i until i∗ and increasing
thereafter.4

Proof: We prove the claim for f . The derivative of eq. (4) with respect to i
is

− 1
n
f ′
(

n−i+1
n

)

f
(

1
n−i+1

)

+ 1
(n−i+1)2

f
(

n−i+1
n

)

f ′
(

1
n−i+1

)

(6)

4The elasticity if the marginal divided by the average. It is easy to verify that ηf (0) = 1.
Since f is convex, its elasticity cannot be decreasing throughout. Likewise, the elasticity
of the concave function g cannot be increasing throughout.

6



Suppose 1
n−i+1

≤ n−i+1
n

. Clearly 1
n−i+1

≤ n−i+1
n

if and only if i ≤ i∗. Eq. (6)
is less than or equal to zero if and only if

1
(n−i+1)2

f
(

n−i+1
n

)

f ′
(

1
n−i+1

)

≤ 1
n
f ′
(

n−i+1
n

)

f
(

1
n−i+1

)

⇐⇒
1

n−i+1
f ′
(

1
n−i+1

)

f
(

1
n−i+1

) ≤
n−i+1

n
f ′
(

n−i+1
n

)

f
(

n−i+1
n

) (7)

This inequality holds for i ≤ i∗ since 1
n−i+1

≤ n−i+1
n

and the elasticity of f is
increasing.

On the other hand, suppose 1
n−i+1

> n−i+1
n

which implies that i > i∗.
Eq. (6) is greater than or equal to zero if and only if the inverse of eq. (7)
holds, which holds for i ≥ i∗ since 1

n−i+1
≥ n−i+1

n
and the elasticity of f is

increasing.

The proof for g is similar. �

The conditions of claim 1 are nonempty. Let f(p) = ep−1
e−1

. Then g(p) =
e−e1−p

e−1
. It is straightforward to verify that ηf is increasing if and only if

ep ≥ 1 + p and ηg is decreasing if and only if 1− p ≤ e−p. Both inequalities
hold for all p by Bernoulli’s inequality [4, p. 9].

By eqs. (4) and (5), v1(P (n, 1)) = vn(P (n, 1)) and v1(P (n, n − 1)) =
vn(P (n, n − 1)). That is, being the first in line or the last one to draw a
ball yield the same utility. Observe that this is true from an ex-ante point
of view, before the first ball is drawn. Under P (n, 1) person 1 is facing the
lottery (1, 1

n
; 0, 1− 1

n
). But person n is facing at this stage the same lottery.

There is a 1
n
chance that no one before him will pick up the green ball, in

which case he wins for sure, and there is a 1 − 1
n
chance that by the time

his turn arrives, the green ball will no longer be in the urn, in which case
his utility is zero. Together with claim 1 we get that under both scenarios,
when one of n people is selected by the pre-ordered mechanism either for the
good or for the bad outcome, it is best to be either first or last one to draw.
Formally:

Corollary 1. If the elasticity of f is increasing, then, for all i

f
(

1
n

)

= v1(P (n, 1)) = vn(P (n, 1)) ≥ vi(P (n, 1))

If the elasticity of g is decreasing, then, for all i

1− g
(

1
n

)

= v1(P (n, n− 1)) = vn(P (n, n− 1)) ≥ vi(P (n, n− 1))
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3.2 Changing n

When n− 1 out of n people are going to be selected for a good outcome, it
seems almost obvious that each of them would like the number n to be as high
as possible, since the ex-ante probability of being selected, n−1

n
, is increasing

with n. But as we have seen in the previous section, the structure and
evaluation of the multi stage lotteries faced by the n individuals may cause
them to have preferences over lotteries with the same reduced probabilities.
In fact, some people may even prefer a lower value of n.

Consider person #900 out of 1,000. By the time his turn arrives, it is
very likely that the red ball was already picked by someone else, in which
case he knows for sure that he is going to get the good outcome. However,
if he is #900 out of 10,000, then it is very likely that 899 people before him
picked a green ball, so he will have to participate in a lottery in which he
may pick the red ball. He may therefore prefer the former case to the latter.
We don’t claim that this is likely to happen, only that it may happen. In this
section we offer conditions under which decision makers behave according to
expectation when people are selected for a good outcome. That is, they prefer
lower n when one of n is selected and higher n when n− 1 of n are selected.
But we also show, by means of examples, that the opposite is possible as
well.

We say that a function h satisfies condition (∗) for individual i if

1− n− i+ 1

n
≤

ηh
(

1
n−i+1

)

ηh
(

n−i+1
n

) (8)

Claim 2. Suppose an individual is added at position i0 without changing
the order of the rest. Then using the P (n+1, 1) procedure, every individual
i ≥ i0 in the original list is strictly worse off, and individual i < i0 is worse
off iff f satisfies condition (∗). For P (n + 1, n), every individual i ≥ i0 is
strictly better off, and individual i < i0 is better off iff g satisfies condition
(∗).

Proof: We prove the claim for P (n+1, 1). First, observe that for all i ≥ i0,
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person i in P (n, 1) becomes person i+ 1 in P (n+ 1, 1). Then

vi+1(P (n+ 1, 1)) = f
(

(n+1)−(i+1)+1
n+1

)

f
(

1
(n+1)−(i+1)+1

)

= f
(

n−i+1
n+1

)

f
(

1
n−i+1

)

< f
(

n−i+1
n

)

f
(

1
n−i+1

)

= vi(P (n, 1))

Thus, all individuals i for which i ≥ i0 are strictly worse off.

Second, consider i < i0. Recall that the value of P (n, 1) to person i is
given by eq. (4). The derivative of eq. (4) with respect to n is

i−1
n2 f

′
(

n−i+1
n

)

f
(

1
n−i+1

)

− 1
(n−i+1)2

f
(

n−i+1
n

)

f ′
(

1
n−i+1

)

which is non-positive if and only if

i−1
n2 f

′
(

n−i+1
n

)

f
(

1
n−i+1

)

≤ 1
(n−i+1)2

f
(

n−i+1
n

)

f ′
(

1
n−i+1

)

⇐⇒
(

i−1
n

)

×
n−i+1

n
f ′

(

n−i+1
n

)

f

(

n−i+1
n

) ≤
1

n−i+1
f ′

(

1
n−i+1

)

f
(

1
n−i+1

)

⇐⇒
(

1− n−i+1
n

)

≤ ηf( 1

n−i+1)

ηf
(

n−i+1
n

)

Thus, individual i < i0 is worse off iff condition (∗) holds for individual i.
The proof for P (n+ 1, n) is similar. �

The LHS of eq. (8) is always less than 1. The RHS is greater than 1
whenever the elasticity at 1

n−i+1
is greater than the elasticity at n−i+1

n
. This

observation leads to the following corollary.

Corollary 2. Let i∗ = n+1−√
n. If the elasticity of f is increasing, then, for

i∗ ≤ i < i0, v
i(P (n, 1)) is increasing in n. If the elasticity of g is decreasing,

then, for i ≤ i∗, vi(P (n, n− 1)) is increasing in n.

Proof: We prove the corollary for f . By claim 2, condition (∗) must hold.
Suppose 1

n−i+1
≥ n−i+1

n
which implies i ≥ i∗. Since the elasticity of f is

increasing, the RHS of eq. (8) is at least 1. Furthermore, the LHS of eq. (8)
is at most 1, so condition (∗) is satisfied. If, on the other hand, 1

n−i+1
< n−i+1

n

which implies i < i∗, then condition (∗) is not necessarily satisfied.
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The proof for g is similar. �

Clearly condition (∗) for individual i is satisfied for h(p) = pα (observe
that the LHS of eq. (8) is less than one and the elasticity of pα ≡ α).5

However, for concave g with decreasing elasticity this is the only function,
since eq. (8) becomes

1− 1
n
≤ ηg(1)/ηg( 1

n
) ≤ 1

As n → ∞, we get ηg(1) = ηg(0). The solution of the differential equation
ηg(p) ≡ α together with g(1) = 1 implies g = pα and concavity implies
α ∈ (0, 1). Observe however that claim 2 did not require convex f or concave
g.

Condition (∗) does not necessarily hold for all functions f , even if they
are convex. For example, let

fn,2(p) =







n−1
n2 p if p ≤ 1

n−1

(n−1)(n2
−1)

(n−2)n2 p+ 1− (n−1)(n2
−1)

(n−2)n2 if p > 1
n−1

The function fn,2 is convex, it does not satisfy condition (∗) for individual 2,
and, indeed, individual 2 prefers P (n+ 1, 1) to P (n, 1) when another person
is added after him.

4 Names Lottery

When the nine Greek heroes draw a lottery, they mark their lots and cast
them in a helmet. The person whose lot falls out is the winner and will fight
Hector. But this is not the mechanism on which the thirty French prisoners
are about to agree.

“How do we draw?” Krogh asked.

Chavel said, “The quickest way would be to draw marked papers
out of a shoe...”

5Condition (∗) for individual i is not empty even if we require that f is convex with
strictly increasing elasticity. One can prove, using numerical methods, that the function
f(p) = ep−1

e−1
satisfies this condition for all n ≤ 10,000 and for all i.
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Krogh said contemptuously, “Why the quickest way? This is the
last gamble some of us will have. We may as well enjoy it.”

“The only way is to draw,” the mayor said.

The clerk prepared the draw, sacrificing for it one of his letters
from home. He tore it into thirty pieces. On three pieces he made
a cross in pencil, and then folded each piece. They shuffled the
pieces on the floor and then dropped them into the shoe.

There is an important difference between the heroes and the prisoners.
The former group needs to choose one person for a desired outcome, while
the latter is to select a small number of its members for a terrible outcome.
We show in this section that these reversed preferences for the selection
mechanism are consistent with our formal analysis.

Define the “names lottery” N(n, 1) as follows. The n individuals’ names
are placed in an urn. An impartial observer draws one name from the urn
and the individual whose name has been drawn is selected. Observe that all
individuals are facing the same lottery

(

1, 1
n
; 0, n−1

n

)

. Using eq. (1), for every
person i, the RD value of this lottery is f( 1

n
).

Similarly we can define the procedure N(n, n − 1) where the n names
are placed in an urn and the n − 1 names drawn by an impartial observer
are selected. Notice that unlike N(n, 1), this is a multi-stage lottery. With
probability 1

n
, each person i is selected in the first round. If not selected,

with probability 1
n−1

he is selected in the second round, and so on until n−1
names have been drawn. That is, each individual i is facing the lottery

(

1, 1
n
;
(

1, 1
n−1

;
(

. . .
(

1, 1
2
; 0, 1

2

)

. . .
)

, n−2
n−1

)

, n−1
n

)

These procedures are depicted in figure 2.

Using eqs. (2) and (3), for every person i, the RD value of this lottery is

v(N(n, n− 1)) = 1−
n−1
∏

i=1

g
(

n−i
n−i+1

)

(9)

Nestor and the Greek heroes’ preferences for the names lottery and the
French prisoners’ preferences for the pre-ordered procedure are consistent
with the next claim:
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N(n, 1) N(n, n− 1)

1

1 0

1

1

0

1
n

n−1
n

1
n

n−1
n

1
n−1

n−2
n−1

1
2

1
2

·
·

·
·

Figure 2: Procedures N(n, 1) and N(n, n− 1) for each person i

Claim 3. If the elasticity of f is increasing, then vi(P (n, 1)) ≤ v(N(n, 1)) for
all i. If the elasticity of g is decreasing, then vi(P (n, n−1)) ≥ v(N(n, n−1))
for all i.

Proof: Since v(N(n, 1)) = f
(

1
n

)

, the first claim follows immediately by
corollary 1.

Suppose the elasticity of g is decreasing. Recall that v(N(n, n − 1)) =

1−∏n−1
j=1 g

(

n−j

n−j+1

)

by eq. (9) and v(P (n, n− 1)) = 1− g
(

n−i+1
n

)

g
(

1
n−i+1

)
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by eq. (5). Observe that, for all i,

v(N(n, n− 1)) = 1−
n−1
∏

j=1

g
(

n−j

n−j+1

)

= 1−
i−1
∏

j=1

g
(

n−j

n−j+1

)

×
n−1
∏

j=i

g
(

n−j

n−j+1

)

≤ 1− g
(

n−i+1
n

)

g
(

1
n−i+1

)

= vi(P (n, n− 1))

where the inequality follows by lemma 1. �

The nine heroes put their lots in a helmet and Ajax’s name was drawn.
They might as well have drawn eight lots for those who would not fight
Hector. These two procedures produce the same ex ante probability for being
the person to fight, but they are different in one important aspect. The one
they used is a single stage lottery. The suggested alternative requires eight
stages. Not surprisingly, our analysis does not consider them the same. The
value of procedure Nwin

1 , which is drawing one name out of a hat of n names
to win a good outcome is

v(Nwin
1 ) = v(N(n, 1)) = f

(

1
n

)

(10)

while the value of procedure N lose
n−1, which is drawing n − 1 names out of a

hat of n names to receive a bad outcome is

v(N lose
n−1) =

n−1
∏

j=1

f
(

n−j

n−j+1

)

(11)

On the other hand, using the P procedure where individuals draw balls in a
pre-ordered line, there is no difference between Pwin

1 , which is selecting the
person who picks the green ball and P lose

n−1, which is selecting the n−1 persons
who pick a red ball, and the value of both is f

(

n−i+1
n

)

f
(

1
n−i+1

)

.

Claim 4. Suppose the elasticity of f is increasing. Then

v(N lose
n−1) ≤ vi(Pwin

1 ) = vi(P lose
n−1) ≤ v(Nwin

1 )
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Proof: Observe that for all i

v(N lose
n−1) =

n−1
∏

j=1

f
(

n−j

n−j+1

)

=
i−1
∏

j=1

f
(

n−j

n−j+1

)

×
n−1
∏

j=i

f
(

n−j

n−j+1

)

≤ f
(

n−i+1
n

)

f
(

1
n−i+1

)

= v(P (n, 1))

≤ f
(

1
n

)

= v(Nwin
1 )

where the inequalities follow by lemma 1. �

In a similar way, we can prove the following:

Claim 5. Suppose that the elasticity of g is decreasing. Then

v(Nwin
n−1) ≤ vi(Pwin

n−1) = vi(P lose
1 ) ≤ v(N lose

1 )

5 Adding Winning Balls

Following the story of Moses and the elders (see the introduction), consider
the following W (n, n − 1) procedure for selecting n − 1 out of n people for
a good outcome. Put n green and one red ball in an urn and let the n
candidates draw balls (with no replacement) according to a pre-arranged
order. If someone picks the red ball, then the other n−1 people are selected.
If not, repeat this procedure using the same order. We show in this section
that although this procedure may be attractive to some individuals, such
preferences are not universal.

Person i will face a three-stage lottery. In stage 1, individuals before him
draw balls and the probability that one of them has drawn the red ball, which
means that person i is selected, is i−1

n+1
. If not, then we move to the second

stage which is person i’s turn. In this stage, his probability of drawing a
green ball is n−i+1

n−i+2
. If he drew a red ball he gets 0 and the procedure is over.

Otherwise, we move to the third stage, in which the probability of person i
being selected is the probability that one of the last n − i + 1 people drew
the red ball. This probability is n−i+1

n−i
. If this does not happen, then the
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procedure is repeated. That is, person i is facing the following multi-stage
lottery:

W i(n, n−1) =
(

1, i−1
n+1

;
((

1, n−i
n−i+1

;W (n, n− 1), 1
n−i+1

)

, n−i+1
n−i+2

; 0, 1
n−i+2

)

, n−i+2
n+1

)

We show next that there is a connection between preferences for adding balls
and preferences for adding individuals as discussed in section 3.2. In the
unintuitive case in which a person prefers not to add a candidate when all
but one are selected for a good outcomes in the pre-ordered procedure, then
he will prefer not to add an extra ball:

Claim 6. If vi(P (n, n − 1)) is decreasing in n when an individual is added
at the end of the order, then vi(P (n, n− 1)) ≥ vi(W (n, n− 1)).

Proof: Adding an extra ball is similar to adding a person at the end of the
order of the P (n, n−1) procedure, only that the “behavior” of the last person
will be different. Suppose this is the case and vi(P (n, n−1)) is decreasing in
n, so that vi(P (n, n−1)) ≥ vi(P (n+1, n)). Observe that the first stages of the
P (n+1, n) and W (n, n−1) procedures where the first i−1 people draw balls
are equivalent (see figure 3 for a graphical comparison of the two procedures.)
In the second stage, in both procedures, if person i draws a red ball, then
he is not selected with equal probability. The difference between the two
procedures arises when person i draws a green ball. In the P procedure, he is
selected and the procedure is over for him. In the W procedure, he is selected
when someone after him draws the red ball, otherwise the procedure must be
repeated. Since the continuation value of the W procedure is less than 1, it
follows that vi(P (n + 1, n)) ≥ vi(W (n, n− 1)). Therefore vi(P (n, n− 1)) ≥
vi(W (n, n− 1)). �

On the other hand, if vi(P (n, n− 1)) is increasing in n when a person is
added at the end, then it is possible (though not guaranteed) that person i
will like to add a winning ball to the urn, even if it means that he’ll to go
through the whole procedure again. For example, let i∗ = n + 1 −√

n, s =

f
(

n−i
n−i+1

)

≤ n−i
n−i+1

, r = f
(

i−1
n

)

= max{0, s +
(

i2−2(n+1)i+(n2+n+1)
n

)

(s − 1)},
and let f be the piecewise linear function

f(p) =







nr
i−1

p if p ≤ i−1
n

n(1−r)
n−i+1

p+ nr−i+1
n−i+1

if p > i−1
n
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P (n+ 1, n) W (n, n− 1)

1

1

1

1

00

W (n, n−1)

i−1
n+1

n−i+2
n+1

n−i+1
n−i+2

1
n−i+2

i−1
n+1

n−i+2
n+1

n−i+1
n−i+2

1
n−i+2

n−i
n−i+1

1
n−i+1

Figure 3: Procedures P (n+ 1, n) and W (n, n− 1) for person i

The function f is convex, increasing in n, and is such that individual i ≤ i∗

prefers W (n, n− 1) to P (n, n− 1).

The opposite is also possible. One can prove, using numerical methods,
that under the function f(p) = ep−1

e−1
, vi(P (n, n− 1)) ≥ vi(W (n, n− 1)) while

vi(P (n, n− 1)) is increasing in n.

6 Concluding Remarks

A fundamental requirement of fairness is equal treatment of equals. When
random selection from equals is needed, this principal requires giving each
candidate an equal chance (see Taurek [16] and Broome [2, 3]). But having a
mechanism which is considered fair by the social planner may not be enough.
Members of society, too, should consider it fair. As we show, the fact that
all probabilities are equal does not imply that all individuals will consider
them as such and some mechanisms will be considered to create more equal
treatments than others.

The argument that such behavior is irrational and that violations of prob-
ability theory may expose decision makers to Dutch books (see de Finetti [6]
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and Yaari [17]) is irrelevant. There is no point in using a “fair” mechanism
unless it is deemed fair by those who should bear its consequences. And if
adding a green ball to the urn, or having a names lottery rather than sequen-
tial draws will make people feel that the procedure is more fair, then so be
it.
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